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Introduction and Problem Statement

Micro air vehicles (MAVs) are flight vehicles with geometric dimensions Icss
that 15 cm and weight less than 100 grams [1]. The need for such vchicles is
motivated primarily by unmanned military and civilian missions that involvc
closed spaces (such as buildings) or short distanccs. Existing MAV designs may
be classified into three categories: fixed, rotary, or flapping wing. While fixed and
rotary wing designs benefit from the existing technologies, flapping wing designs
are fundamentally different and arc inspired from biological flyers such as insects,
and small birds and bats. In particular, flapping wing designs that operate at low

Reynolds number (10” < Re <10°) and low forward flight specd (7-17 m/s) have
received considerable attention due to the exceptional flight capabilities observed
in insects [1-3].

A significant portion of research on flapping wing MAVs has focuscd on the
mechanisms that generate the unsteady aerodynamic forces. This rcsearch [1-7]
has identified the predominant force generating mechanisms as leading edge
vortices (LEVs), combined with wing rotation, and wake capture as a result of
wing-wake interaction. Attempts to model the aerodynamic loads have employed
two approaches: (1) computational fluid dynamics (CFD) based on solutions of
the Navier-Stokes (NS) equations, and (2) approximate aerodynamic models
based on potential flow solutions. Descriptions based on CFD [7-10] offer the
best resolution of the unsteady flow field; however these approaches arc
expensive when parametric studies are of interest. Approximate models, on thc
other hand, offer a compromise between accuracy and computational efficiency;
thcrefore such approaches arc best suited for trend and design type studies.
Historically, simple steady and quasi-steady models were used; however, thesc
models consistently underestimated forces generated by flapping wings [1].
Unsteady aerodynamic formulations used for flapping wing problems can bc




classified as assumcd (or prescribed) wake and free wakc models. Assumed wake
models, developed originally for aeroelastic studies of fixed wing vehicles [11],
are two-dimensional linear thin airfoil theories that are valid for small plunge
(bending) and pitch (torsional) displacements. Recent studies [12,13] have
attempted to incorporatc the cffect of the LEV in assumed wake formulations.
These approachcs involve modifying Theodorsen’s theory by using a leading edge
suction analogy [14] that was originally derived for stcady scparated flow on delta
wings for moderate angles of attack (typically less that 40 degrces). Frec wake
models include unsteady panel methods [10] and discrete vortex methods [15—
17]. These approaches, which account for evolution of the wake, provide a
reasonable approximation to thc development of thc unstcady wake during a
flapping cycle. A two-dimcnsional panel method was used in Ref. [10], and
reasonably good agrecment was found with CFD simulations for the range of
parameters considcred. Howevcr, LEVs were not accounted for in this study. Two
dimensional discrete vortex formulations that account for flow separation have
been considered in Refs. [15-17]. The model developed in Ref. [15], which
accounts for separation close to the leading edge, comparcd well with
experimental data for airfoils in steady flow. In this approach the chordwise
location of the separation point, which may be obtained using indepcndent
computations or expcriments, is cxplicitly incorporatcd into the formulation.
Comprehensive trcatment of an unsteady aerodynamic modcl based on a discrete
vortex method that is applicablc to insect-like flapping wings in hover is
presented in Refs. [16,17]. The model was used to simulate rigid wings, and for
the cases considered, compared well with experimental data on flapping wings.

The importancc of wing flexibility in enhancing the performance of flapping
wings has been mentioned in a number of studies; howevcr, only a limited
number of studies [13,18,19] have attempted to address this issuc in a systematic
manner. In the earlicst study, where a linear finitc element model of the wing was
eoupled with an unsteady panel method [18], the wing model was based on
experimentally obtained gcometric and inertial data on Moth wings. More recent
eomputational studies have eonsidered wing modcls bascd on Eulcr-Bernoulli
beam theory coupled with CFD [20], or membranes rcinforced by metal or
composite framcs [13] coupled with Theodorsen’s thcory modificd using
Polhamus leading edge suction analogy. These studics [13,18,19], which
considered wing flexibility in a lincar manner, concludcd that wing flexibility had
a favorable effect on lift, and that the effect of flexibility cannot be ignored when
computing aerodynamie loads.

Thus, the overall objective of the research carricd out in the framcwork of
the current grant was to determine the effect of flexibility on the performance of
anisotropic flapping wings in hover and forward flight. The specific objectivcs
were as follows:

(1) Develop a nonlincar acroclastic model to study flexible anisotropic
flapping wings.

(2) Conduct systematic validation studies to develop confidence in the model.

(3) Explore the effect of wing flexibility on aeroelastic rcsponsc and unsteady
loads generated by flapping wings.




Nonlinear Aeroelastic Model
The aeroelastic model is obtained by coupling MARC, a commercially available
nonlincar finite element code, with the approximatec aerodynamic model that was
dcveloped in Refs. [16,17]; a description of this modecl is presented in Ref. [20].
Structural Dynamic Model

The structural dynamic model of a bio-inspired wing, depicted in Fig. 1,
(note: all figures are provided at the end of the report) consists of beam and
shell elements capable of undcrgoing large rigid body rotations as well as
moderate-to-large flexible deformation. The elements have compatible degrces of
freedom so that beam stiffened shell structures may be constructed [21].
Furthermore, the elements support a varicty of constitutive laws so that isotropic
as well as anisotropic wings can bc modeled. Wing kinematies consists of large
amplitude, prescribed, time dependent rigid body rotations imposed at the base
(root) of the wing. In MARC, rotations may be prescribed either using a time
depcndent rotation vector [21] or as displacements at two or more nodes.
Aerodynamic Model

The approximate acrodynamic model is based on potential flow and uses a
circulation/vorticity approach to computc the aerodynamic loads. The formulation
accounts for leading edge separation and subscquent vortex formation,
incorporates the effect of wing thickncss and camber, and includes a frec wake
model. The model is two-dimensional and is applied in a strip theory manner.
Furthermore, each airfoil cross-section is assumed to interact only with its own
shed wake. At each time stcp, vorticity shed into thc wake is computed by
cnforcing a Kutta condition at the trailing edge and a stagnation condition at the
leading edge. The cvolution of the wakc is governed by the Rott-Birkhoff
equation, which is derived from thc Biot-Savart law for two-dimensional flow.
The unsteady aerodynamic loads are computed using the vortex impulsc method
and the unsteady Bernoulli equation. It is important to note that the formulation
[16,17] was originally developed for rigid wings for the case of hover; its
implementation for wings that havc both span-wise and chord-wise flexibility is
described in Ref. [20].
Coupled Fluid-Structure Model

The aeroelastic responsc is obtained using an updated Lagrangian (UL)
mcthod [22] wherein the equations of motion at each time step are formulated by
using the equilibrium configuration computed at the previous timc step as the
rcference. A schematic description of the approach is shown in Fig. 3. The
coupled fluid-structure problem is modcled in MARC via user-decfined load
subroutines [21] whereby time dcpendent pressure loads that are computed from
the wing motion arc imposed on the structure. The user subroutine is called from
the main program for each Newton-Raphson iteration of the UL method thercby
ensuring convergence of the structural displacements and aerodynamic loads
within each time step. Schematie of the acroelastic solution in MARC is depictcd
in Fig. 4. Finally, thc resulting cquations of motion are integrated using a suitable
numerical scheme.




Results and Discussion

Validation of the structural dynamic model

Important considerations in the struetural modeling of MAV wings are (1)
implementation of preseribed, large amplitude, rigid body rotations that are
representative of wing kinematies, and (2) aecurate eapturc of the dynamie or
centrifugal stiffening effect in flexible structures undergoing preseribed rotary or
flapping motion. Note that all the results that follow were obtained by integrating
the equations of motion using a single step Houbolt scheme [23].

Implementation of large amplitude rigid body rotations in MARC was
examined by imposing kinematies of a dragonfly wing on a rigid reetangular plate
shown in Fig. 2. The results {20], shown in Fig. 5, indieated that wing kinematies
ean be aceurately implemented as displacements, but produee signifieant error
when implemented as a time dependent rotation veetor.

The effect of centrifugal stiffening was examined by considering the spin-up
motion of a flexible plate; details of the test ease are given in Ref [24]. The
results, shown in Fig. 6, indicate that this effeet is accurately modeled in MARC.
Validation of the aerodynamic model
The aerodynamie model was validated for (1) cases of attached flow over the
airfoil, and (2) cases where flow separation from the leading edge was observed.

The foree coefficients for a NACAO0012 airfoil undergoing preseribed plunge
motion are shown in Fig. 7. Figure 9 shows a comparison of lift coefficients
obtained for a rigid flat plate airfoil undergoing preseribed plunge motion in near
hover conditions. Parameters: Chord = 1.0 m, plunge frequency = 0.064 Hz,
Reynolds number = 1000, plunge amplitude = 0.5m. The CFD results were
obtained by implementing laminar NS equations in CFD++, a commereially
available CFD eode, using a grid that had approximately 150,000 eells with 240
points on the airfoil. Results using the approximate model were obtained by
assuming flow separation at the leading edge. This result indieates that the
approximate model shows reasonable agreement with CFD for the case
considered.

Aeroelastic response results

Preliminary aeroelastie results that examined the effect of flexibility on foree
generation by wings undergoing preseribed motion have been presented in Ref.
[20]. The ealculations were performed by assuming leading edge separation for a
zero free stream veloeity, thereby simulating eonditions of hover. The results,
which were obtained for wings that had different spanwise stiffness [20], were
consistent with the finding of previous studies and indicated that flexibility had a
comparatively small but favorable impaet on force generation and that the effect
of aerodynamie loads on wing deformation was small compared to the effeet of
inertia loads. Sample results of lift and chord-normalized tip displacements are
shown in Fig. 10.

Concluding Remarks and Accomplishments

The research performed during the period of this grant resulted in the
development and comprehensive testing of a nonlinear acroelastic model that is
suitable for the analysis of flexible anisotropic MAV wings for the case of hover;




this work [20] was presented at the 49™ AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference held in April 2008 in
Schaumburg, IL.

Currently, the model is being extended in the frame work of the multi-
university rcsearch initiative (MURI) to include effects of forward flight, finite
span and tip vortices. Furthermore, a separation and re-attachment criterion will
also be included so that the aeroelastic model can be used for both hover and
forward flight for a range of angles of attack.
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Figure 7: Lift and moment coefficients for a NACA0012 airfoil undergoing prescribed plunge

motion. UPM results were obtained from Ref [10]. k and 4 denotc reduced frequency and chord-
normalized plunge amplitude respectively.
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Figure 9: Lift coefficients for a rigid flat plate airfoil undergoing prescribed plunge motion in near
hover conditions.
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Figure 10: Lift and chord-normalized tip displacement of wings undergoing prescribed plunge
motion for the case of hover [20]. Black — rigid wing, Red and Blue — flexible wings; Blue line
corresponds to the most flexible configuration tested.




